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ABSrRAC'I 

Let (G, A, ~) be a separab[e C*-dynamical system, with G abelian, and let F 
denote the dual group of G. We characterize the F-invariant ideals of the 
crossed product algebra G ×,  A, and use this characterization to prove that if in 
addition G is compact and A is type I AF, then G ×,, A is AF also. Finally, 
assuming G is discrete abelian and both A and G × , , A  are type 1, we 
determine necessary and sufficient conditkms, in terms of A and the isotropy 
subgroups for the action of G on ft., for G ×,,A to be AF. 

§1. Introduction 

It is an open question whether the C*-crossed product G x ,  A of an AF 

C*-algebra A by a finite group G is AF. In fact, the question was first raised by 

Bratteli, in a preliminary version of [2], for compact group actions on an AF 

algebra. It was raised again, by Effros in [7, problem 7, page 30], in slightly 

altered form. Eflros asked whether the fixed point algebra of a finite group of 

automorphisms G on an AF algebra is again an AF algebra, and remarked that 

this is unknown even if G has 2 elements. In view of the well known relationship 

between the crossed product algebra and the fixed point algebra, Effros' 

question may as well have been asked about the crossed product algebra. 

In the case of separable C*-dynamical systems, we prove in this paper that 

Bratteli's question has an affirmative answer in the special case that A is a type I 

AF algebra and G is a compact abelian group. The type I hypothesis ensures 

that A, the space of unitary equivalence classes of irreducible representations of 
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A, equipped with the hull-kernel topology, has enough of a Hausdorft like 

structure so that by a composition series argument we may without loss of 

generality assume it, and hence a lso/~/G,  is HausdorfI. ,The hypothesis that G is 

abelian allows us to employ Takai duality to prove that the map of (G ×~, A)  ̂  

o n t o / ~ / G  which assigns to each irreducible representation of G x~A the orbit 

in /i, on which it is based (see §2 for details as well as for a discussion in more 

generality) is open. Knowing both that the above map is open and that its range 

is Hausdorff, we can use Theorem 4 of [14] to represent G x~ A as a continuous 

field of C*-algebras, analyze the fiber algebras and the base space, and prove our 

main result. 

In §2 we consider separable C*-dynamical systems ((7, A, c~) with G abelian. 

We obtain apparently new results, by representation-theoretic methods, on the 

structure of those ideals of the crossed-product algebra G x ~ A  which are 

invariant under a certain subgroup of the dual group F of G, with respect to the 

dual action of F on G x,~ A. By letting the subgroup be F itself, we obtain as 

Corollaries that the map of PR(G x~ A)  into the quasi-orbit space ( P R ( A ) / G ) -  

(see §2 for a detailed discussion) which assigns to each primitive ideal of G x~ A 

the quasi-orbit in P R A  on which it is based, is open, and induces a 

homeomorphism between the quasi-orbit spaces (PR(Gx~A)/F) and 

(PR(A)/G)-. We also verify, even when A is non-type I, that every quasi-orbit 

in PR A does indeed have a primitive ideal of G x~ A "living over it". 

In §3 we consider the case of a compact abelian group G acting on a type I AF 

algebra A, and prove that the crossed product algebra G x~ A is AF. We show, 

by a simple topological argument, that A has a non-zero G-invariant ideal ! 

such that i, and hence also i/G, are HausdorfL We actually need only the 

weaker result that ~,/G is Hausdortt, and this result actually follows from a deep 

theorem of Glimm [10, Theorem 1, Condition 5]. However,  in our case of 

compact (3, the stronger result is so much easier to prove that we do so directly. 

The proof of our main theorem then follows from composition series arguments, 

known results about AF algebras, the results of §2 applied to represent G x~ I (I 

as above) as an algebra of continuous sections, and results of Phil Green which 

describe the structure of the resultant fiber C*-algebras. 

Finally, in §4, we apply the results of §3 and Takai duality to the case of a 

discrete abelian group G acting on a C*-algebra A. Under the assumption that 

both A and G x~,A are type I, we prove that G x~A is AF if and only if A is 

AF and for each ~ E  A, G, ,  the dual of the isotropy group G,,, is totally 

disconnected. This last result is perhaps of extra interest due to Proposition 4.3.2 

of [4] which states that the crossed product of any unital C*-algebra by the 
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integers is not AF. It follows that the integers cannot act freely and smoothly on 

a type I unital AF algebra. 
As a referenGe for all unexplained terminology and results concerning crossed 

product algebras, including Takai duality and induced representations, see [17] 

and/or [12]. Througfiout this paper, all groups, C*-algebras, Hilbert spaces, etc., 

are assumed to be separable. There is a 1-1 correspondence between representa- 

tions L of the crossed product algebra G x .  A and covariant pairs of representa- 

tions (V, Tr) of the C*-dynamical system (G,A,a), and wc often blur the 

distinction by writing L = (V, 7r). 
q-he first-named author would like to thank his colleagues at Tel Aviv 

University, especially Aldo Lazar and Israel Gohberg, for their warm hospitality 

during his stay there. 

§2. On invariant ideals of G × . A  

Let (G, A, c~) denote a separable C*-dynamical system, with G abelian, and 

let F denote the dual group of G. It was proven in [16, Lemma 6.1] that the 

existence of non-trivial G-invariant ideals of A is equivalent to the existence of 

non-trivial F-invariant ideals of the crossed product C*-algebra G x . A .  The 

proof proceeds by explicitly constructing, for a given non-trivial F-invariant ideal 

of G x o A, an associated non-trivial G-invariant ideal of A, and by appealing to 

q'akai duality for the converse. More generally, let H be a closed subgroup of G. 

q-he action of G on A extends naturally to an action of G on the crossed product 

algebra H x .  A, and in [15, Proposition 2.5] it is proven that the existence of 

non-trivial G-invariant ideals of H×.A is equivalent to the existence of 

non-trivial ideals of G xo A invariant under the action of H 1, the annihilator of 

H in F. In [15] the proof proceeds by explicit construction in both directions, and 

assigns to a non-trivial H±-invariant ideal J of G ×,  A a non-trivial G-invariant 

ideal IH (J) of H x~ A, and conversely, to a non-trivial G-invariant ideal N of 

H x o A a corresponding non-trivial H ~-invariant ideal Ext N of G ×~ A. Furth- 

ermore, it is proven in [15, Proposition 2.6] that for j and N as above, the 
relations Ext( I ,  (J) )C J and I ,  (Ext N ) D  N hold, with equality for G discrete 

[15, Proposition 2.7 and 2.8]. The question of equality or inequality in general is 

not raised. 
In [12, Proposition 9] two pairs of maps are defined relating ideals of H x~ A 

with ideals of G x ,  A, in the more general context of twisted crossed product 

algebras and not necessarily abelian groups G. The relationship between several 

of these maps is also discussed. Now it is clear by comparing [12, Proposition 9] 
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with [15, Lemma 2.2] that the map Ext of [15] is identical to the map Ex of [12] 

which by [12, Proposition 13] is identical, for G abelian and for G-invariant 

ideals of H x~ A, to the map Ind. Note that Proposition 13(ii) of [12] only applies 

to the case H = NJ~ (see [12] for notation and a complete discussion of the 

twisted crossed product construction) and to G-invariant ideals I of A. 

However, as in pages 198-199 of [12], G xoA can be considered as a twisted 

crossed product formed from the action of G on H x~ A, with twisting subgroup 

H, so that Proposition 13(ii) of [12] does actually apply. The map Ind has a 

representation-theoretic interpretation. If N is an ideal of H x~A and L a 

representation with kernel N, then lnd N is the kernel of the induced representa- 

tion I n d L  of G x~A [12, Proposition 9(iii)]. It is also fairly clear that for an 

H~'-invariant ideal J of G x~A, the ideal In(J) defined in Lemma 2.1 of [15] is 

identical to Res J as defined in Proposition 9(ii) of [12], although we omit details 

as we do not explicitly need this fact. The map Res also has a representation- 

theoretic interpretation. If J is an ideal of G x~A and L =(V,  Tr) is a 

representation of G x ,  A with kernel J, then R e s J  is the kernel of the 

representation L I- = ( V I ' ,  7r) of Hx~A.  
It follows from the above discussion and Proposition ll(ii) of [12] that for a 

G-invariant ideal N of H x~A, Res Ind N = N so that in fact Proposition 2.7 of 

[151 holds without the hypothesis that G be discrete. What does not seem to 

follow formally from the manipulations of [12], however, is the following 

LEMMA 2.1. Let (G,A,e~) be a separable C*-dynamical system with G 
abelian, and let H be a closed subgroup of G. If J is an Hl-invariant ideal of 
G x~ A, then Ind(Res J) = J. 

PaooF. We shall give a completely self-contained proof, using the 

representation-theoretic interpretations of Res and Ind. Accordingly, let L = 

(V, 7r) be a represehtation of G x~A on a Hilbert space Yfc, with kernel L = J. 

For each X E H ~, J = XJ  = kernel xL, where xL is the representation of G x~ A 

corresponding to the covariant pair (xV, 7r). It follows that J is the kernel of the 

direct integral representation f , ,  @(xV, 7r)dx on L2(H l, Y(L). As H L is natur- 

ally the dual group of G/H, and the direct integral of the characters of G/H 
(viewed as a representation of G) is unitarily equivalent, via the Fourier 

transform, to the quasi-regular representation W of G on L2(G/H), we have 

J = kernel (W@ V, I @  rr) on L2(G/H, ~L). The proof clearly follows once we 

verify that (W @ V, I @ or) is unitarily equivalent to Ind((V In, ~r)). This latter 

fact is to be expected since W = Ind(T), where T is the trivial representation of 

H, and a result of Fell's [9, kemma 4.2] implies that Ind(T)@ V is unitarily 
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equivalent to Ind(V [,). In the following paragraph, we briefly present the 

details for the crossed product algebra case, and we shall be done. 

Recall that the induced representation is modelled on the space ~L of Borel 

functions f: G ~ Y(~ such that 

(*) f(gh)= V(h)"f(g)  and fc;1. IIf(g)ll~dg<~' 

with (V, "#)= Ind(V I,,, ~')) defined by ('(/(s)f)(g)= f(s lg) and (#(a) f ) (g)= 
rr(g-~a)f(g). Let c be a Borel cross-section for the quotient map of G onto 

G/H with c(Y) = e, so that each g in G can be written uniquely as g = c(~,)d(g), 
with d: G----> H Borel. Let 0 be a unitary operator from Y(c into L'-(G/H, ~ )  
defined by (Of)(~,)= V(c(g))f(c(g)). Then 

(O(/(s)f)(~,) = V(c(g))((/(s)f)(c(g))= V(c(~,))f(s ~c(g)) 

while ( (W@ V)(s)Of)(~,)= V(s)(Of)(s ' g)= V(s)V(c(s ' g))f(c(s ' g)). As 

(**) s-'c(g) = c(s 'c(g))d(s-'c(g))= c(s 'g)d(s 'c(g)) 

by the cross-section property of c we have 

V(c(g))f(s ' c (g ) )=  V(c(g))V(d(s 'c(~,))-t)f(c(s ~g)) by (*) 

= V(s)V(c(s 'g))f(c(s-'g)) by (**). 

Likewise, 

(O#(a)f)(g)= V(c(g))Tr(c(g) 'a)f(c((',)) 

= zr(a)V(c(g))f(c(g)) by the covariance of (V, 7r} 

= (I @ rc)(a)( Of)(g). 

It follows from the above Lemma that the hypothesis that G be discrete can 

be eliminated from Proposition 2.8 of [15]. We also have 

COROLLARY 2.2. Let (G, A, c~) be a separable C*-dynamical system, with G 
abelian, and let F denote the dual group of G. Each F-invariant ideal J of G x~ A 
is of the form G x ,  L for a unique G-invariant ideal I of A. 

PROOF. R e s J  is a G-invariant ideal of A, by Proposition ll(i) of [12]. The 

Corollary now follows from Lemma 2.1, the fact that the maps Ex and Ind are 

identical, as mentioned earlier, and Proposition 12(i) of [12]. 
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We denote by ,~ the space of unitary equivalence classes of irreducible 

representations of A, and by PR(A) the space of primitive ideals of A. When 

both spaces are equipped with their usual hull-kernal topology, the action of G 

on A determines naturally jointly continuous actions of G on both /~ and 

PR(A). For Q in PR(A ), the orbit closure G O =  {P ~ PR(A ): P _D ["1~o g -O} ,  

and the quasi-orbit G~O = {P ~ PR(A): GP= GO}. 
The space of quasi-orbits, endowed with the quotient topology relative to the 

map assigning to each P in PR(A) its quasi-orbit, is denoted by (PR(A)/G)-.  It 

is well known [12, pages 221-222] that for a primitive ideal O of G × , A  and a 

representation L = i V, 7r) of G ×,, A with kernel L = Q, Res O = kernel rr = 

( " l ,~ ,g  • P for some primitive ideal P of A, and O thus determines a unique 

quasi-orbit in PR(A). We say that O "lives over" the quasi-orbit GP of P. The 

corresponding m a p 0 " P R ( G x ~ A ) - - + ( P R ( A ) / G ) - -  assigning to O in 

PR(G x,, A) the quasi-orbit over which O lies is continuous [12, Proposition 9 

and the Lemma on page 221], and, in case A is type I, onto by virtue of the 

"Mackey machine". We prove below two new results about the map 0: that it is 

onto even when A is not type I, by a simple application of Takai duality; and 

that it is open by virtue of Corollary 1.2. For both results we note that Res is 

F-invariant, since if L = ( V, 7r} is a representation of G ×, A and X E F, then the 

representation xL corresponds to the covariant pair (xV, rr}, where ( x V ) ( g ) =  

%(g)V(g), g ~ G. 

LEMMA 2.3. Let (G ,A ,a )  be a separable C*-dynamicaI system, with G 
abelian. For each P in PR(A),  there exists O in PR(G × , A )  which "lives over" 
the quasi-orbit of P. 

PROOF. Let rr be an irreducible representation of A on Y(,, with kernel 

rr = P and let iV, "fi') denote the representation of G × , A  on L2(G, Y(=) induced 

from rr. Defining a representation U of F, the dual of G, on L2(G, Y{,) by 

(U(x) f ) ( t )  = %(t)f(t), % E F, t ~ G, f E L2(G, Y(=), it is almost immediate that 

U has the proper intertwining relationship with iV, #)  so that the triple 

iU, V, ,b) defines a representation of Fx~ (G x~A),  and also that this represen- 

tation is irreducible. By the remarks preceding the Lemma, with A and G being 

replaced by, respectively, G x~ A and F, 

kernel(( V, "#)) = Res(kernel(i U, V, (r))) = A TO 

for some primitive ideal Q of G ×,  A. Upon applying the Res map once more, 

now as a map from ideals of G ×~ A to ideals of A, we have 
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Res(kernel((V, 7i ' ) ) )=kernel* = R e s  ( ["1 7 0 ) .  
TEl- 

Now Res preserves intersections [12, Proposition 9] and is F-invariant, so 

R e s ( ( ' l ~  3 ' 0 ) =  Res O. Thus Res O equals kernel d-, which is ~vell-known to 

equal [" l~Gkernel(g.  7r)= (" l~ogP,  and we are done. 

THEOREM 2.4. Let (G, A, ~) be a separable C*-dynamical system, with G 
abelian. The mapO" PR(G ×~ A)---+ (PR(A) /Gy  -, de[ined preceding Lemma 2.3, 

is continuous, open and onto. 

PROOf. By Lemma 2.3 and [12, Proposition 9 and the Lemma on page 221], 

we need only prove 0 is open. If O is open in PR(G ×~A), so is FO = U./EI-~IIQ~ 
and by the F-invariance of 0, noted immediately preceding Lemma 2.3, we may 

assume without loss of generality that O is an open, F-invariant subset of 

PR(G ×~A). By the definition of the hull-kernel topology, there exists a 

F-invariant ideal J of G x ~ A  such that O = { P E P R ( G x ~ A ) :  P~J} .  By 

Corollary 2.2 the ideal J is of the form G ×~ I for a G-invariant ideal I of A. As 

G ×~ I is generated by elementary tensors of the form ]:@ i, f ~ Lr(G), i C I, 
and as, for a representation L =(V, rr) of G x ~ A ,  L ( [ @ i ) =  rr(i)V(]:), it is 

clear that kernel L D G ×~ I if and only if kernel rr _D I. From this discussion and 

Lemma 2.3, 0(O) equals the set of quasi-orbits G~P such that (-]~c, g P ~  L By 

the G-invariance of I, this set is the image, in (PR(A)/G) -~, of { P E P R ( A ) :  

P ~  I}. As the latter set is open in the hull-kernel topology and as the map of 

PR(A) onto (PR(A)/G)-  is open (the Lemma on page 221 of [12] again), we are 

done. 

COROLLARY 2.5. Let (G, A, a) be a separable C*-dynamical system, and let 
F be the dual group o[ G. The spaces ( P R ( G x , A ) / F )  and (PR(A)/G)- are 
homeomorphic. 

PROOF. Consider the map 0: PR(G x,, A )--+ (PR(A)/G)  of Theorem 2.4. It 

is F-invariant, and as it is continuous and the space (PR(A)/G)  is T,, it is in fact 

constant on quasi-orbits, and thus induces a continuous map 0 of 

(PR(G ×, A)/F) onto (PR(A)/G)  . The map 0- is open since 0 is, and we need 

only show that ~)- is one-to-one. Accordingly, let L = (V, rr) and R = (W, r) be 

irreducible representations of G ×,  A with kernels, respectively, P and O. If 

0(P) = 0(O) then kernel rr = kernel r. Let U be the left regular representation 

of G on L2(G). As in the proof of Lemma 2.1, the representation ( U @  V, 

I @  rr) has kernel O~<~xP and is unitarily equivalent to Ind rr, while ( U @  W, 
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I @ 7) has kernel N~, xO and is unitarily equivalent to Ind ~-. As induction is 

continuous, it follows that P and O determine the same quasi-orbit in 

PR(G x , A ) .  

REMARKS. (1) A is G-simple if and only if ( P R ( A ) / G )  is a one point space. 

It thus follows from Corollary 2.5 that A is G-simple if and only if G x,x A is 

F-simple. This well-known result [16, Lemma 6.1] was in fact the motivation for 

this section. 

(2) It was shown in [19, Theorem 2.2], under certain special hypotheses 

implying among other things that A and G z , ,A are type I and that G acts 

trivially on fi~, that not only is the map 0 from (G x~ A) ~ onto fi~ continuous and 

open, but that ( G x ,  A )  ~ is indeed a principal F-bundle over fi~. 

(3) In the special case in which A is a commutative C*-algebra, Theorem 2.4 

follows from [21, Theorem 5.3]. 

§3. AF crossed product algebras 

Our main goal in this section is to prove the following 

THEOREM 3.1. Let (G,A,  ct) be a separable C*-dynamical system with G 

compact abelian and A type I AF. Then the crossed product C*-algebra G x~ A is 

also AF. 

The proof uses the following two lemmas. The first is somewhat stronger than 

we need, and what we need actually follows readily from Theorem 1 of [10]. 

However, Theorem 1 of [10] is deep and rather intricate, while in our case of a 

compact group action a short proof can be presented. We note that it is valid for 

any compact group G and any type I C*-algebra A. 

LEMMA 3.2. Let (G, A, a )  be a separable C*-dynamical system, with G 

compact and A type I. Then A has a non-zero G-invariant liminal ideal I such 

that fl is Hausdorff. 

LEMMA 3~3. Let ( G , A , a )  be a separable C*-dynamical system, with G 

compact abelian and A a liminal A F  algebra with .~ Hausdorff. Then G x,~ A is 

AF. 

PROOF OF THEOREM 3.1. A standard transfinite argument will yield a composi- 

tion series of G-invariant closed two-sided ideals {/,,},,~,,~ of A such that for 

each p < ~-, I,,+dI~, is a non-zero liminal G-invariant ideal of A/I,, such that 

(I,,, JI ,)  ̂  is Hausdorff. Clearly G x .  A admits {G x,/,},,~,,:T as a composition 
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series and it is enough to show that each G x,~ 1, is an AF algebra. This is done 

also by transfinite induction. The case of limit ordinal is obvious. Thus suppose 

that p < z  and G x~Ip is AF. G xolp+~ is an extension of G x~Ip by 

G x,, Ip+,/G x~ I,. This quotient to *-isomorphic to G x~, I~+,/Ip by [12, Proposi- 

tion 12]. From Lemma 3.3 we infer that Gx~I,+Jlp is an AF algebra. A 

well-known result on extensions of AF algebras ([5] and [8]) shows now that 

G x~ I~+, is an AF algebra. 

PROOF OF LEMMA 3.2. There is no loss of generality in supposing that A itself 

is liminal since the greatest liminal ideal of A is G-invariant.  Now the conclusion 

is equivalent to the existence of a non-zero G-invariant  open Hausdorff subset 

of A. 
Let O be a dense open Hausdorff  subset of A and V a non-empty open subset 

of O such that V, the closure of V in O, is compact.  Clearly G~" is compact too 

and from G V  C GO we derive the existence of a finite set {g~};' i C G such that 

G V C  Ui' ~ giO. Put W = V(A'~', g~O). By the density of O, W is a non-empty 

open subset of A. Now G W  is non-void, open and G-invariant.  We want to 

show that G W  is Hausdorff. Let ~ ,  zr~ be a pair of distinct points in G W  wbich 

we want to separate by disjoint neighborhoods. Without loss of generality we 

may suppose that ~-~ ~ W and ~_~ ~ gW for some g C G. Then ~-~ C gV so there 

is i, 1 ~ i ~ n, for which zr~ E g~O. But then both zr,, zr~ belong to g~O which is 

open and Hausdorff. Hence ~-,, ~_~ can be separated as needed. 

REMARK. After we had proven the above Lemma,  we noticed Theorem 2.7 

of [20], which proves that A in fact contains a non-zero G-invariant  ideal of 

continuous trace. However,  if V is an open subset of A corresponding to the 

dual of a continuous trace ideal, then it is easy ([6, Proposition 4.5.4]) to check 

that GV is the dual of a G-invariant  continuous trace ideal provided one knows 

that G V  is Hausdorff. Thus our result easily gives the stronger result. Also, 

apparently,  a proof similar to ours appears  in §8.1 of [18]. 

Before we tackle the proof of Lemma 3.3 we need one more lemma. 

LEMMA 3.4. Let A be the C*-algebra defined by a continuous.field ((A (t)), O) 
of A F  algebras over a totally disconnected Hausdorff space T. Then A is AF. 

PROOV. The proof is actually given as part of the proof of the theorem on 

page 80 of [3], and we omit repeating the details. 

PROOF OF LEMMA 3.3. Let 0 be the continuous open map of (G x,, A)^ onto 

T = A/G,  defined preceding Lemma 2.3. As A is Hausdorff  and G is compact,  
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clearly A / G  is Hausdorff also. It follows from Theorem 4 of [14] that G ×,,A is 

*-isomorphic to the C*-algebra defined by a continuous field of C*-algebras 

over T. Moreover, the fiber algebra over t ~ T is ( G x ,  A)/I,, where I, is the 

intersection of all the primitive ideals in 0 ~(t). Thus, if t = G~- for some 7r C ,4, 

L is the intersection of all the kernels of the irreducible representations of 

G ×, A which live over the orbit of 7r. 

It is easy to see that T is totally disconnected since A is AF and A, therefore 

has a basis of compact open sets. Thus, in view of the preceding lemma, it 

remains to show that each fiber algebra (G ×, A)/L is AF. For t and rr as above 

denote J, = f-'l~c~ kernel(grr). By the F-invariance of 0 and Corollary 2.2 and its 

proof, it is clear that J, = Res(/,) and that L = G x,J,.  By Propositions 12 and 13 

of [12] and the assumption that A is liminal, (G x , A ) / L  is *-isomorphic to 

Gx~,A/J,.  By Theorem 2.13(ii) of [13], Gx, ,A /J ,  is *-isomorphic to 

C * ( G ' ,  C, ~-') @ ~'{'(~), where C * ( G ' ,  C, ~-') is a certain twisted crossed product 

related to the C*-dynamical system (G~, A/kernel  7r) as described on pages 

218-219 of [12]. and 3'{(2() is the algebra of compact operators on the Hilbert 

space Yr. Now G"  is a compact topological group and C*(G;, C, r ')  is a quotient 

of the group algebra C*(G ' ) .  As the latter is liminal with discrete spectrum [6, 

15.1.5 and 18.4.3]. it is a restricted direct sum of elementary algebras, hence AF, 

and we are done. 

§4. Discrete abelian automorphism groups 

In this section we discuss the action of discrete abelian groups. 

THEOREM 4.1. Let (G, A,a )  be a separable C*-dynamical system, with G 

discrete abelian. 1]: both A and G x, ,A are type L then G ×,,A is AF  if and only if 
A is AF  and, for every rc ~ A, G=, the dual of the isotropy group G,, is totally 
disconnected. 

We first prove 

LEMMA 4.2. Let ( G , A , a )  be a separable C*-dynamical system with G 
discrete abelian and A liminal, with A homeomorphic to G/G~ for some ~ ~ f~. 

Assume G x , , A  is type L Then G x ,  A is A F  if and only i] (3~ is totally 

disconnected. 

PROOF. Let P = kernel ~r. By Theorem 2.13 of [13] G x ,  A is isomorphic to 

C * ( G ' ,  C, ~") @ 9'f(2(), Y( a certain Hilbert space and C*(G'~, C, 7') the Mackey 

system associated to (G~, A/P, a). As C * ( G ' , C ,  ~-') is isomorphic to a heredit- 
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ary subalgebra of C * ( G ' , C , r ' ) @ K ( ~ ) ,  G x ~ A  is AF if and only if 

C*(G' ,  C, r') is, by Theorem 3.1 of [8]. Assuming, as we do, that G x~ A is type 

I, so is C*(G' ,  C, r'). Note that G ' c a n  be regarded as the central extension of T 

by G= determined by a cocycle a on G=. Letting 

S = {s ~ a~: a(s,t) = a(t,s) for all t E aT}, 

it is known that a is cohomologous to a cocycle lifted from a totally skew cocycle 

b of G~/S (Theorem 3.1 of [1]). Let Z denote the center of G'p, and Z ~ the 

annihilator of Z/N,, in G'/N¢,. It follows from the discussion on pages 218-219 

of [12] that G;/N,  can be naturally identified with G,~, and one can easily check 

that Z/N,, identifies with S. Hence as (G;/N~,)^/Z l identifies with the dual of 

Z/N,,, or with S, it follows from Proposition 34 of [12] that C * ( G ' , C ,  r ')  A is 

homeomorphic to S. As C*(G' ,  C, r') is type I, it is AF if and only if its dual 

C*(G' ,  C, r') A has a basis of compact open sets [3, page 80]. We shall be done 

once we check that S is totally disconnected if and only if d;, is. From our 

hypothesis that G x,, A be type I, again, it follows that the totally skew cocycle b 

of G~/S is type I, and thus, by Lemma 3.1 of [l], that G~/S is finite. Thus S ±, the 

annihilator of S in (~,, is finite, and as ( ~ / S  ~ is naturally homeomorphic to S, 

the result is clear. 

REMARK. It follows (page 80 of [3]) from our hypotheses that A be liminal 

with A, homeomorphic to the discrete space GIGs, that A is automatically AF 

in Lemma 4.2. 

PROOF OF THEOREM 4.1. First assume that A and G ×,, A are type I, and that 

G is discrete abelian. By Theorem 3.2 of [11], G acts smoothly on /~. As the 

largest liminal ideal J of A is G-invariant and G acts smoothly on the open 

subset J of /i, we may apply Theorem 1 of [10] and a standard composition 

series argument, as in the proof of Theorem 3.1, to find a composition series 

{I~},,~,,<, of G-invariant closed two-sided ideals of A such that for every p < r, 

l o + j / I  ,, is a non-trivial liminal G-invariant ideal of A/I,, and the orbit space 

(Io+,/lo)~/G is Hausdorff. Note that we are not claiming here that (I,+JI,,) ^ itself 

is Hausdorff. Note also that by Theorem 3.2 of [11] again, G does act smoothly 

o n  ( / , ,~ , / / , ,F .  

Assume now in addition that A is AF and that for each rr E/~,  ( ~  is totally 

disconnected. To show G x~,A is AF it suffices, ,exactly as in the proof of 

Theorem 3.1, to check that each G ×~ (Io+,/I~) is AF. Changing notation, we may 

assume that A is AF liminal with A / G  Hausdorff, and that G ×,~A is type I. To 

check that G x~, A is AF, apply Theorem 4 of [ 14] and Theorem 2.4 to conclude 
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that G x~ A is *-isomorphic to the C*-algebra defined by a continuous field of 

C*-algebras over  T = f~/G.  As ,~ has a basis of compact  open sets and as the 

map of fi, onto , ~ / G  is continuous and open, A / G  clearly also has a basis of 

compact  open sets. Exactly as in the proof of Lemma 3.3, the fiber algebras are 

of the form G x ,  ( A / J ) ,  to which Lemma 4.2 applies. Thus, by Lemma 3.4, 

G x ~ A  is indeed AF. 

To prove the converse, suppose now that G x ~ A  is AF, with G discrete 

abelian and A and G x ,  A type I, as before. The dual group F of G is compact  

abelian, and by Theorem 3.1, Fx~ (G x ~ A )  is AF. This algebra is *-isomorphic, 

by Takai  duality, to A Q Y{(L2(G)),  and thus A, which is *-isomorphic to a 

hereditary subalgebra of A @ Y{(L2(G)),  is AF also by Theorem 3.1 of [8]. Let 

• r E .4. By Theorem 1 of [10] the orbit GTr in .,~ is open in its closure, and 

homeomorphic  to G/G~.  Thus there are G-invariant  ideals I, J of A with J _~ I 

such that ( J / I )  ^ is homeomorphic  to GTr. As G x~ (J/1) is isomorphic to 

( G x ,  J ) / ( G x ~ I ) ,  it is AF and type I. Fur thermore J / I  is postliminal with 

discrete spectrum, hence iiminal [6, Problem 4.7.1~]. Thus Lemma 4.2 applies 

and we are done. 

REMARK. It has been shown in [4, Proposition 4.3.2] that the crossed product 

of a unital C*-algebra by Z is never AF. Thus it follows from this result and 

Theorem 4.1 that a unital type I AF algebra admits no free and smooth action by 

Z. 

A d d e d  in proof. Since submitting the paper  for publication, the authors were 

able to remove the commutativity hypothesis for the group G in Theorems 2.4 

and 3.1. The details will appear  elsewhere. 
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